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Abstract

Saliency is an important perceptual cue that occurs at dif-
ferent scales of resolution. Important attributes of saliency
are symmetry, continuity, and closure. Detection of these
attributes is often hindered by noise, variation in scale, and
incomplete information. An iterative voting method using
oriented kernels is introduced for inferring saliency as it
relates to symmetry or continuity. A unique aspect of the
technique is in the kernel topography, which is refined and
reoriented iteratively. The technique can cluster and group
nonconvex perceptual circular symmetries along the radial
line or sparse features along the trangential direction. It has
an excellent noise immunity, and is shown to be tolerant to
perturbation in scale. Applications of this approach to blobs
with incomplete and noisy boundaries and to scientific im-
ages are demonstrated.

1 Introduction

Saliency is an important perceptual cue for feature-based
representation, fixation, and description of large-scale
datasets. Saliency can be driven by continuity, symmetry,
or closure. Among these, it is well known that symme-
try is a preattentive process [1] that improves recognition,
provides an efficient mechanism for scene representation,
and aids in reconstruction and description. Radial symme-
try is a special class of symmetry, which persists in nature
at multiple scales. Robust and efficient detection of inex-
act radial symmetries facilitates semantic representation of
images for summarization and interpretation. Examples in-
clude the shape of a nucleus, organization of nuclei in tis-
sue observed with an epi-fluorescence microscope, oceanic
vortices imaged through observational platforms or numer-
ical simulation models of fluid flow, and general blob de-
tection. At the lowest level, a radial symmetry operator can
be used as an interest operator for detecting critical features
that lead, for example, toward visual attention. However,
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interest operators have to be fast, retain good noise immu-
nity, be sufficiently stable with respect to the underlying in-
tensity distribution, and be capable of delineating/resolving
nearby features into disjoint events. Yet, the notion of ra-
dial symmetry is used in a weak sense since the basic ge-
ometry can deviate from convexity and strict symmetry for
inferring the center of mass. The proposed method allows
inference of the center of mass from incomplete boundary
information through voting and perceptual grouping, and is
implemented through refinement of specifically tuned vot-
ing kernels. Figure 1 shows several examples indicating po-
tential application areas.

(a) (b) (c)

Figure 1: Radial symmetries in scientific applications: (a)
position of nuclei in tissue; (b) macromolecular assemblies
imaged through cryo-electron microscopy; (c) vortex for-
mation in atmospheric data.

Spatial voting has been studied for at least four decades.
Hough introduced the notion of parametric clustering in
terms of well-defined geometry, which was later extended
to the generalized Hough transform. In general, voting op-
erates on the notion of continuity and proximity, which can
occur at multiple scales, e.g., points, lines, lines of symme-
try, or generalized cylinders. The novelty of our approach
is in defining a series of kernels that vote iteratively along
the radial or tangential directions. Voting along radial di-
rection leads to localization of the center of mass, while
voting along the tangential direction advances continuity.
At each iteration, kernel orientation is refined until it con-
verges to a single focal response. Several different varia-



tions of these kernels have been designed and tested. They
are cone-shaped, have a specific scale and spread, and target
geometric features of approximately known dimensions. In
the case of radial symmetry, the voting kernels are applied
along the gradient direction, then at each consecutive iter-
ation and at each grid location, their orientation is aligned
along the maximum response of the voting space. The shape
of the kernel is also refined and focused as the iterative
process continues. The method is applicable to perceptual
shape features, has excellent noise immunity, is tolerant to
variations in target shape scale, and is applicable to a large
class of application domains.

The organization of this paper is as follows. Section 2
provides a brief review of the previous research. Section 3
describes the basic idea and detailed implementation of evo-
lutionary voting. Section 4 demonstrates the experimental
results. Section 5 concludes the paper.

2 Review of previous work

Complexities in the detection of saliency are often due to
variations in scale, noise, and topology. Other complexi-
ties originate from missing data and perceptual boundaries
that lead to diffusion and dispersion of the spatial grouping
in the object space. Techniques in radial symmetries can
be classified into three different categories: (1) point opera-
tions leading to dense output, (2) clustering based on param-
eterized shape model or voting, and (3) iterative techniques.
Point operations are usually a series of cascade filters that
are tuned for radial symmetries [2]. These techniques use
image gradient and orientation to infer center of mass for
blobs of interest [5, 6, 7]. Recent efforts [2] have focused on
speed and reliability. Parametric clustering techniques are
often based on a variant of the Hough transform, e.g., circle
or ellipse finder. These techniques produce loci of points
corresponding to the parametric models of well-known ge-
ometries. These point distributions are then merged, and
model parameters are refined. Non-parametric clustering
techniques operate along the gradient direction to search for
radial symmetry, which could be line- or area-based. Line-
based search [4] is also known as spoke filter, where the
frequency of occurrence of points normal to the edge direc-
tion are aggregated. In contrast, area-based voting accumu-
lates votes in a small neighborhood along the gradient direc-
tion. Examples of iterative methods include watershed [8]
and regularized centroid transform (RCT) [9], which trans-
port boundary points to the local center of mass iteratively.
These can be classified as curve-based voting since the vot-
ing path is not along a straight line but along a minimum
energy path. Voting paths can be easily distorted by noise,
local structures, and other singularities in the image, and
may lead to over-segmentation. Thus, the solution needs to
be regularized.

In summary, interest-point operators are fast and well-

suited for detecting small features for higher levels of inter-
pretation and manipulation. Parametric voting techniques
could be memory intensive depending upon the dimension-
ality of the parameter space and remain sensitive to small
deviations from the underlying geometric model. Line- and
area-based voting produce a voting space that is diffused
and subject to further ad hoc analysis. On the other hand,
iterative techniques are adaptive to geometric perturbation
and produce more stable results. The proposed method
shares some attributes with tensor-based voting [3], how-
ever, it differs in that it is iterative, can be model-based, and
is scalar. It demonstrates excellent performance in the pres-
ence of noise, variations in scale, and topological changes.

3 Approach

Let (1) ���� ��� ��� �� � � be the original image;
(2) ���� �� be the voting direction where ���� �� ��
���� ���� ��� ��� ���� ���; (3) ����� ���� be the radial range;
and (4) � be the voting area defined by

���� �	 ����� �����
� �� ���� � ��� 	� � � � ���	�
����� � � � ����� ���� �� �
 � 	 � ���� �� � 
�

(1)

and (5) voted image with parameters ������ �����
� be de-
noted by 
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�.
The voting method is as follows:

Iterative Voting
0) Initialize the parameters: ����� �����
��� and a
sequence 
��� � 
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� � �. And
set � �� �
 � 
���.
1) Initialize voting direction and magnitude: Compute
����, its magnitude ��������, and let the voting direction
for each grid point at � �� ���� ��� �������� � �� be
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3) Compute the votes: 
 ��� �	 ����� �����
� � � . For all
pixels ��� �� � � and ��� �� � ���� �	 ����� �����
�,
update the spatial cluster:
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4) Update the voting direction: For grid points ��� �� � �,
revise the voting direction:
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5) Refine the angular range: Let � �� �� �, repeat steps
3-5.
6) Localize centers of mass: Localize centers of mass by
thresholding
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 ��� �	 ����� �����
� � ��

(a) (b) (c)

(d)

Figure 2: Kernel topograhy: (a-c) three samples of evolving
kernels for detection of radial symmetries; and (d) oriented
kernels for voting along tangential directions (shown only
at a fixed scale).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Search for radial symmetries for synthetic multi-
ple overlapping objects: (a) original image; (b)-(h) voting
landscape at each iteration.

Figure 2 shows a subset of voting kernels that vary in
topography, scale, and orientation. An example of the ap-
plication of radial kernels to overlapping objects is shown
in Figure 3 together with the intermediate results. The vot-
ing landscape corresponds to the spatial clustering that is
initially diffused and subsequently refined and focused into
distinct islands.

4 Experimental results

The proposed method for detecting of saliency has been ap-
plied to a wide class of objects across various application
domains. We will show that our method is tolerant to varia-
tions in scale, has excellent noise immunity, and can detect
overlapping objects with impartial boundaries.
1) Synthetic data: Figure 4 shows computed localization of
blobs of interest from synthetic images corrupted by noise.
In Figure 4(a), boundary information is incomplete, and the
problem is one of perceptual grouping. The method is ap-
plied along the radial direction to detect centers of mass,
and along the trangential direction to infer continuity.
2) Scientific applications: Several examples of scientific
images are provided to demonstrate extensibility of the
method. The first group, shown in Figure 5, are acquired
from wide-field and transmission electron microscopy, re-
spectively. These images indicates that (1) blobs of inter-
est have variable scale, (2) these blobs often overlap, and
(3) a significant amount of noise is often present, especially
for imaging macromolecular assemblies. Figure 6 shows a
detailed example corresponding to the evolution of radial
symmetries from a tissue section imaged with a confocal
microscope. The next example, shown in Figure 7, cor-
responds to the detection of nuclei in C. elegans. Finally,
Figure 8 shows detection and refinement of an atmospheric
vortex. The intermediate results indicate how the cluster is
localized along the radial direction.

(a) (b) (c)

Figure 4: Synthetic images perturbed with noise: (a) objects
with incomplete boundaries; (b) detected centroids; and (c)
inferred contours.

5 Conclusion and future work

We have proposed an approach for detecting saliency in spa-
tial data. Two new techniques are introduced: re-estimation
of voting direction and update of voting fields from coarse
to fine. We suggest that the dynamic and evolutionary vot-
ing strategy overcomes the drawbacks of traditional static
voting. The performance of the method has been demon-
strated on synthetic and real data. The method assumes
an approximate prior knowledge of scale; however, this
is a valid assumption for some applications (e.g., parti-
cle picking, nuclei localization). At the same time, the
technique merely hypothesizes/infers potential saliency at
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Figure 5: Scientific images: (a,b) cells infected with the
SARs virus observed with a wide-field microscope, and
(c,d) macromolecular assemblies observed with a transmis-
sion electron microscope.
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Figure 6: Evolution of the voting landscape for localization
of nuclei in a tissue section: (a) the original image; (b)-(f)
refinement of the voting map.

a given scale. These inferences need to be verified or val-
idated by other means, which could be yet another higher-
level process.
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